Acta Cryst. (1996). C52, 1639-1641

trans-Dichlorobis $[(R, R)$-1,2-phenylenebis-(methylphenylphosphine- P)]ruthenium(II)

David C. R. Hockless, ${ }^{a *}$ S. Bruce Wild, ${ }^{a}$ Andrew M. McDonagh, ${ }^{b}$ Ian R. Whittall ${ }^{b}$ and Mark G. Humphrey ${ }^{b}$
${ }^{a}$ Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT 0200, Australia, and ${ }^{b}$ Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia. E-mail: david@rschpl.anu.edu.au

(Received 14 December 1995; accepted 1 March 1996)

Abstract

The title complex, $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{P}_{2}\right)_{2}\right]$, is a convenient precursor for the synthesis of interesting symmetrical or unsymmetrical optically active ruthenium σ-acetylide complexes. The complex has trans geometry about the octahedral Ru atom, with $\mathrm{Ru}-\mathrm{P}$ distances in the range 2.304 (1)-2.354 (1) \AA and $\mathrm{Ru}-\mathrm{Cl}$ distances of 2.426 (1) and 2.432 (1) \AA.

Comment

We have been investigating the nonlinear optical properties of metal σ-acetylide complexes (Whittall, Humphrey, Hockless, Skelton \& White, 1995; Whittall, Humphrey, Samoc, Swiatkiewicz \& Luther-Davies, 1995). For these materials to exhibit second-order nonlinearity in the bulk phase, a favourable molecular dipole alignment is required. The incorporation of a chiral ligand into a metal complex is one method of ensuring non-centrosymmetric packing for optimal molecular orientation in a crystal lattice. We have therefore commenced an investigation of complexes containing the optically active (S, S)-1,2-phenylenebis(methylphenylphosphine) (diphos) ligand. The title complex, trans-dichlorobis $[(R, R)$-1,2-phenylenebis(methylphenylphosphine)]ruthenium(II), (I), is a convenient precursor of ruthenium σ-acetylide complexes (McDonagh, 1995). The crystal and molecular structure of the complex has been determined for the following reasons: (i) the reactivity of terminal acetylenes with the trans-dichloro complex is significantly slower than with the corresponding cis compound, and (ii) accurate atomic positions are required for semi-empirical computational investigations.

© 1996 International Union of Crystallography
Printed in Great Britain - all rights reserved

The title complex is the second bis(diphos)ruthenium(II) crystal structure to be determined, the other being that of the trans-carbonylhydridobis $[(S, S)$ -1,2-phenylenebis(methylphenylphosphine)]ruthenium(II) cation, (II) (Grocott, Skelton \& White, 1983). Both complexes have trans geometry about octahedral Ru atoms, but complex (I), unlike (II), does not contain a twofold rotation axis. Comparison of complex (I) with the three existing ruthenium mono or bis(diphos) structures, i.e. (II) (Grocott, Skelton \& White, 1983), trans-dichloro[(S, S)-1,2-phenylenebis(methylphenylphosphine)]-[(S,S)-1,2-phenylenebis(methylphenylphosphine) oxide]ruthenium(II), (III) (Hall, Skelton \& White, 1983a), and cis-dichlorocarbonyl(dimethyl sulfoxide) $[(S, S)$ -1,2-phenylenebis(methylphenylphosphine)]ruthenium(II), (IV) (Hall, Skelton \& White, 1983b), shows very similar ruthenium-phosphorus geometries about the metal centre and comparable ruthenium-chlorine bond lengths.

Fig. 1. The molecular structure of the title complex showing the labelling scheme for the non- H atoms. Displacement ellipsoids are shown at the 20% probability level and H atoms are drawn as circles of arbitrary radii.

Experimental

The title complex can be prepared by the method of Grocott \& Wild (1982), which involves the reduction of $\mathrm{RuCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}$ by dihydrogen followed by the addition of two equivalents of diphos. It can also be prepared, together with the cis isomer, by adaptation of the preparation of $\left[\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right][\mathrm{dppm}$ is bis(diphenylphosphino) methane] from $\left[\mathrm{RuCl}_{2}\left(\mathrm{dmso}_{4}\right]\right.$ (dmso is dimethyl sulfoxide) (McDonagh, 1995). Suitable crystals were grown by diffusion of hexane into a dichloromethane solution of the complex at room temperature.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{P}_{2}\right)_{2}\right]} \\
& M_{r}=816.63
\end{aligned}
$$

Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=11.641$ (6) \AA
$b=12.245$ (8) \AA
$c=26.446(5) \AA$
$V=3769(2) \AA^{3}$
$Z=4$
$D_{x}=1.439 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-6S diffractometer $\omega / 2 \theta$ scans
Absorption correction: based on azimuthal (ψ)
scan data (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.937, T_{\text {max }}=$ 1.000

3784 measured reflections
3784 independent reflections

Refinement

Refinement on F
$R=0.0251$
$w R=0.0190$
$S=1.874$
3310 reflections
425 parameters
H -atom parameters not refined
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$ $\left.+\left(0.001 F_{o}^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.0028$

Cell parameters from 25 reflections
$\theta=13.3-17.6^{\circ}$
$\mu=0.745 \mathrm{~mm}^{-1}$
$T=296$ (1) K
Irregular
$0.42 \times 0.40 \times 0.36 \mathrm{~mm}$ Yellow
3310 observed reflections
$[I>3 \sigma(I)]$
$\theta_{\text {max }}=25.08^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 14$
$l=0 \rightarrow 31$
3 standard reflections
monitored every 150
reflections
intensity decay: none

$\mathrm{C}(214)$	$-0.2911(8)$	$0.2464(6)$	$-0.0113(3)$	$0.102(3)$
$\mathrm{C}(215)$	$-0.3528(8)$	$0.2323(5)$	$-0.0549(2)$	$0.107(3)$
$\mathrm{C}(216)$	$-0.3074(6)$	$0.1682(5)$	$-0.0934(2)$	$0.079(2)$
$\mathrm{C}(301)$	$-0.0972(4)$	$-0.1754(4)$	$-0.0107(2)$	$0.053(2)$
$\mathrm{C}(311)$	$0.1050(4)$	$-0.1417(4)$	$-0.0700(2)$	$0.037(1)$
$\mathrm{C}(312)$	$0.1824(4)$	$-0.1647(5)$	$-0.1072(2)$	$0.058(2)$
$\mathrm{C}(313)$	$0.2938(5)$	$-0.1277(5)$	$-0.1049(2)$	$0.072(2)$
$\mathrm{C}(314)$	$0.3311(5)$	$-0.0666(5)$	$-0.0656(2)$	$0.062(2)$
$\mathrm{C}(315)$	$0.2556(5)$	$-0.0406(4)$	$-0.0275(2)$	$0.058(2)$
$\mathrm{C}(316)$	$0.1439(4)$	$-0.0784(4)$	$-0.0300(2)$	$0.050(2)$
$\mathrm{C}(341)$	$-0.0159(4)$	$-0.3414(4)$	$-0.0733(2)$	$0.038(1)$
$\mathrm{C}(342)$	$0.0604(4)$	$-0.3890(4)$	$-0.0388(2)$	$0.049(2)$
$\mathrm{C}(343)$	$0.0683(5)$	$-0.5006(4)$	$-0.0340(2)$	$0.057(2)$
$\mathrm{C}(344)$	$0.0015(5)$	$-0.5664(4)$	$-0.0641(2)$	$0.055(2)$
$\mathrm{C}(345)$	$-0.0724(5)$	$-0.5225(4)$	$-0.0995(2)$	$0.048(2)$
$\mathrm{C}(346)$	$-0.0809(4)$	$-0.4088(4)$	$-0.1045(2)$	$0.035(1)$
$\mathrm{C}(401)$	$-0.0986(4)$	$-0.3922(4)$	$-0.2101(2)$	$0.051(2)$
$\mathrm{C}(411)$	$-0.3016(4)$	$-0.4248(4)$	$-0.1492(2)$	$0.038(1)$
$\mathrm{C}(412)$	$-0.3177(5)$	$-0.5178(4)$	$-0.1781(2)$	$0.056(2)$
$\mathrm{C}(413)$	$-0.4131(5)$	$-0.5835(4)$	$-0.1719(2)$	$0.065(2)$
$\mathrm{C}(414)$	$-0.4941(5)$	$-0.5574(5)$	$-0.1370(2)$	$0.062(2)$
$\mathrm{C}(415)$	$-0.4826(5)$	$-0.4631(5)$	$-0.1094(2)$	$0.068(2)$
$\mathrm{C}(416)$	$-0.3861(5)$	$-0.3985(4)$	$-0.1153(2)$	$0.054(2)$

Table 2. Comparison of important bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with those of existing analogues

Complex	$\mathrm{Ru}-\mathrm{P}$	$\mathrm{Ru}-\mathrm{Cl}$	$\mathrm{P}-\mathrm{Ru}-\mathrm{P}$
(1) a	$2.304(1)$	$2.426(1)$	$84.29(5)$
	$2.321(1)$	$2.432(1)$	$83.82(4)$
	$2.338(1)$		
	$2.354(1)$		$84.92(8)$
$(\mathrm{II})^{b}$	$2.320(2)$		$83.09(9)$
(III) c	$2.317(2)$		
	$2.310(3)$	$2.425(2)$	$84.92(4)$
$(\mathrm{IV})^{d}$	$2.219(2)$	$2.434(2)$	
	$2.313(2)$	$2.469(2)$	

References: (a) this work; (b) Grocott, Skelton \& White (1983); (c) Hall, Skelton \& White (1983a); (d) Hall, Skelton \& White (1983b).

The θ scan width used was $(1.00+0.3 \tan \theta)^{\circ}$ at a speed of $4.0^{\circ} \mathrm{min}^{-1}$ (in ω). The weak reflections were rescanned a maximum of four times and the counts accumulated to ensure good counting statistics. Stationary background counts were made on each side of the reflection, with a $2: 1$ ratio of peak to background counting time. H atoms were located from a difference map and fixed at ideal positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The structure was solved by heavyatom methods and expanded using Fourier techniques (PATTY in DIRDIF; Beurskens et al., 1992). All calculations were performed using TEXSAN (Molecular Structure Corporation, 1995). Data collection and cell refinement used MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988).

We thank the Australian Research Council for support of this work and the Johnson Matthey Technology Centre for the loan of ruthenium salts. IRW holds an Australian Postgraduate Research Award (Industry) and MGH holds an Australian Research Fellowship.

[^0]
References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Grocott, S. C., Skelton, B. W. \& White, A. H. (1983). Aust. J. Chem. 36, 259-265.
Grocott, S. C. \& Wild, S. B. (1982). Inorg. Chem. 21, 3527-3534
Hall, S. R., Skelton, B. W. \& White, A. H. (1983a). Aust. J. Chem. 36, 267-270.
Hall, S. R., Skelton, B. W. \& White, A. H. (1983b). Aust. J. Chem. 36, 271-277.
McDonagh, A. M. (1995). Unpublished results.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Version 1.7-1. Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. \& White, A. H. (1995). Organometallics, 14, 3970-3979.
Whittall, I. R., Humphrey, M. G., Samoc, M., Swiatkiewicz, J. \& Luther-Davies, B. (1995). Organometallics, 14, 5493-5495.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564

Acta Cryst. (1996). C52, 1641-1642

trans-Dichloro(2-n-propylsulfinylpyridineN)(triethylphosphine-P)palladium(II)

Ana M. G. Dias Rodrigues, ${ }^{a}$ M. Teresa do P. Gambardella, ${ }^{a}$ Regina H. P. Francisco, ${ }^{a *}$ Gerimário F. de Sousa ${ }^{b}$ and Carlos A. L. Fllgueiras ${ }^{c}$
${ }^{a}$ DQFM, IQSC, Universidade de São Paulo, Caixa Postal 780, 13560250 São Carlos, SP, Brazil, ${ }^{b}$ DQ, ICC, Universidade de Brasilia, 70910900 Brasilia, DF, Brazil, and 'DQ, ICEx, Universidade Federal de Minas Gerais, 30270910 Belo Horizonte, MG, Brazil. E-mail: porto@ifqsc.sc.usp.br

(Received 8 December 1994; accepted 19 February 1996)

Abstract

The structure determination of the title compound, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}\right)\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NOS}\right)\right]$, revealed the occurrence of discrete molecules, in which the Pd atom has square-planar coordination geometry, with distances $\mathrm{Pd}-\mathrm{P} 2.232$ (1), $\mathrm{Pd}-\mathrm{N} 2.128$ (3) and $\mathrm{Pd}-\mathrm{Cl} 2.293$ (2) and 2.294 (2) A. The sulfoxide derivative acts as a monodentate ligand.

Comment

Investigations of the coordination chemistry of some transition and post-transition metals, namely Ni, Pd, Pt, Sn and Sb , with ambidentate S -, N - and O -donor ligands have revealed a variety of structural features,
with sulfoxide behaving as a mono- or bidentate ligand, or bridging two metal cations (Zhu, Shao, Yao, Wang \& Wang, 1990; de Sousa \& Filgueiras, 1990a,b; de Sousa, Filgueiras, Darensbourg \& Reibenspies, 1992; Adedapo et al., 1993; Francisco, Gambardella, Rodrigues, de Sousa \& Filgueiras, 1995).

In the title compound, (I), the N-bonded 2-n-propylsulfinylpyridine group is monodentate. The coordination around the metal atom is completed by a P atom and two chloride anions, the four atoms arranged with trans square-planar geometry. Distances between each of these five atoms and their least-squares plane are in the range -0.0289 (3) to 0.032 (4) \AA. The pyridine ring is almost perpendicular [dihedral angle $81.9(1)^{\circ}$] to the plane containing the metal and its ligands. The displacement parameters are larger for the C atoms of the alkyl groups than for those of the ring. A view of one molecule is shown in Fig. 1.

(I)

The proton-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum showed a chemical shift at 39.86 p.p.m. (relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$) which agrees with a trans $-\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ arrangement (Kunz \& Pregosin, 1979). The IR spectra (CsI pellets) showed SO absorptions at 1055 and $1050 \mathrm{~cm}^{-1}$, which were attributed to the stretching frequencies of the free ligand and the complex, respectively, suggesting little or no change of frequency upon complexation.

Fig. 1. ORTEP (Johnson, 1965) view of (I) showing the labelling of the non-H atoms and ellipsoids plotted at the 50% probability level.

Experimental

Orange single crystals of (I) were grown by slow evaporation of a warm $1: 1$ mixture of n-hexane and dichloromethane containing $\left[\mathrm{PdCl}(\mu-\mathrm{Cl})\left\{\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}\right]_{2}(0.20 \mathrm{~g}, 0.34 \mathrm{mmol})$ and $\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{SOC}_{3} \mathrm{H}_{7}(0.115 \mathrm{~g}, 0.68 \mathrm{mmol})$.

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: TA1085). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

